Hot Weather Comparative Heat Balances in Pervious Concrete and Impervious Concrete Pavement Systems

John T. Kevern*1, Liv Haselbach*2, Vernon R. Schaefer*3

*1University of Missouri-Kansas City, Kansas City, MO, USA
*2Washington State University, Pullman, WA, USA
*3Iowa State University, Ames, IA, USA

Corresponding author email: kevernj@umkc.edu

ABSTRACT

Many pavements contribute to the urban heat island (UHI) effect due to their bulk mass and heat absorption capacities. Granular ground surfaces composed of soils or sands do not contribute to the UHI effect in a similar manner. Their porous nature may lessen the effect, both with an increased insulating capacity and with an enhanced mechanism for evaporative cooling from absorbed water.

Pervious concrete is a novel pavement that is being developed to aid in preventing stormwater-related environmental problems. Pervious concrete has a network of interconnected voids, which allow water exfiltration to the subbase below. Limited studies indicate that a pervious concrete surface can have more elevated temperatures than those of similar traditional impervious pavements, but also that temperatures are lower under the pavements.

This study focuses on a site in Iowa where both a pervious concrete and a traditional concrete paving system have been installed and where temperatures were recorded within the systems for extended time periods. The analyses cover days with negligible antecedent precipitation and high air temperatures, which are extreme conditions for UHI impact. This paper compares the increase in overall heat stored during several diurnal heating cycles in both of these systems. These analyses include not only the temperatures at various depths, but also the heat stored based on the bulk mass of the various layers in each system and below grade. Results suggest that pervious concrete pavement systems store less energy than do traditional systems and can help mitigate UHIs.

Introduction

The urban heat island (UHI) effect has been studied in many cities, and the contribution of daytime heating to UHIs is well established (Eliasson 1996; Asaeda et al. 1996; Pomerantz 2000). Many traditional pavement types are known to be contributors to the UHI effect due to their bulk mass and heat absorption capacities. Previous research has shown that higher albedo surfaces and shading can offset some of the impact by reducing the solar energy absorbed in the pavements (Akbari 2001). Lighter colors and higher albedos tend to aid in the mitigation of the UHI by limiting solar energy absorbed into the system. The solar reflectance index (SRI) is being used as a variable to compare the coolness of various traditional pavements and has been accepted by the US Green Building Council (USGBC) in its Leadership in Energy and Environmental Design (LEED™) Green Building rating system as a methodology for determining if a pavement design aids in mitigating the UHI effect (Haselbach 2008; Marceau and Van Geem 2007). This variable is used independently of any other pavement parameter, with the assumption that the pavements compared have similar heat absorption and transfer characteristics below the surface, although some studies acknowledge that subsurface characteristics may be important (Gui et al. 2007).

Natural and manmade granular ground surfaces composed of soils or sands are not considered to be contributors to the UHI effect due to their porous nature. Of interest herein is the impact of the porosity of a pavement system on its capacity to absorb and store energy. It has been suggested that the voids within highly pervious pavements may insulate the ground, mitigating UHI impact (Haselbach and Gaither 2008). Permeable surfaces may also allow for evaporation of water that infiltrates into the media, aiding in cooling through evaporation.

A group of novel pavements, referred to as permeable pavements, are being developed to aid in preventing stormwater-related environmental problems. Permeable pavements allow stormwater to infiltrate into the ground, reducing runoff and avoiding costly additional stormwater control devices to manage flooding and pollution dissemination downstream. One such pavement is Portland Cement Pervious Concrete (PCPC), which provides a hardscape similar to those of traditional impermeable concrete or asphalt pavements, but also consists of a network of interconnected macro-pores that readily allow water exfiltration to the subbase and provide some water storage for further evaporation or infiltration. A question of interest is how pervious concrete might perform due to its unique pore structure, as compared with the performance of traditional concrete under very hot conditions typical for the UHI.
Asaeda and Ca (2000) studied several surface media during two days of extreme heat in 1994. Their results indicate that certain types of permeable pavements, particularly blocks, did not necessarily aid in abetting the UHI effect. Detailed information was not given for all the media used, and therefore a clear picture of how many of the porous pavements might react did not emerge. Only a few studies have been published about the temperature impact of using PCPC instead of other impervious pavement surfaces. From these, it is apparent that the PCPC surface can have more elevated temperatures than do traditional impervious pavements, but also that temperatures decrease rapidly under the pavement (Haselbach and Gaither 2008; Kevern et al. 2009a). None of the published studies compared PCPC and traditional pavements with respect to their overall energy balances in periods of extreme heat.

This study focuses on a site located at Iowa State University (ISU), where both a pervious concrete and a traditional Portland Cement Concrete (PCC) paving system were installed and temperature readings were taken within the systems for extended time periods. The site was constructed as part of the Iowa Pervious Concrete Stormwater project and also contained monitors and collectors to quantify stormwater improvements observed from the pervious concrete. The analysis covers days with typical high air temperatures greater than 32° C (90° F), with negligible antecedent precipitation (i.e., no rain events in the previous 7 days), which are extreme conditions for UHI impact.

The pervious concrete is seen to have higher mid-pavement temperatures at midday than does traditional concrete, but both locations have similar temperatures during the night/early morning. However, in order to study UHI effects, the fluctuations in heat storage over both the complete systems should be evaluated with steady background soil temperatures below the pavement systems. The analysis in this paper compares the overall heat stored during several diurnal cycles in the summer for both of these systems. The analysis includes not only the temperatures at various depths, but also the heat stored, based on the bulk mass of the various layers in each system.

Although many of the pervious systems studied had higher surface temperature readings than did traditional concrete systems, the latter appear to have significantly higher below-grade insulating capabilities. This may make it possible to design pervious concrete systems to mediate or reverse additional UHI impact more effectively than through traditional pavement surfaces.

Site Description

ISU parking lot 122 was constructed as the Department of Natural Resources Iowa Pervious Concrete Water Quality Project, with the objective to quantify the environmental impact of pervious concrete parking areas. The site was designed to monitor both the quantity and quality of stormwater effluent from equally sized traditional and pervious concrete parking areas. Temperature and soil moisture sensor arrays were installed in both of the pavement profiles to monitor frost-line penetration and infiltration characteristics. Water-level sensors in the pervious concrete aggregate bases coupled with monitoring wells allowed estimation of infiltration rates and the impact on local groundwater conditions. The site was constructed during the summer and fall of 2006 and opened to traffic on December 4, 2006. Sensors were installed to compare the stormwater characteristics and thermal behavior of the two areas. Flow meters and automated samplers were installed to measure and collect stormwater from the PCC surface and from the PCPC base. Water-level sensors in the aggregate bases and monitoring wells were installed to determine actual infiltration and compare with theoretical values. Volumetric soil moisture arrays were installed under each pavement to determine infiltration characteristics. Temperature sensor arrays (Campbell Scientific T107L) were installed into and underneath both pavements to monitor thermal behavior. Surface sensors were omitted due to concerns about winter plowing operations. The location and assigned names of the temperature sensor profiles are shown in Figure 1 for both the PCPC and PCC pavements. Table 1 provides a description of the sensors, along with the depth below the pavement surface.

Figure 1. Pavement cross section and sensor placement
Table 1. Sensor descriptions

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Description</th>
<th>Depth Below Surface (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{\text{pcc}, \text{8cm}})</td>
<td>Mid-level in PCC</td>
<td>8 cm</td>
</tr>
<tr>
<td>(T_{\text{pcc}, \text{40cm}})</td>
<td>Mid-level in aggregate base</td>
<td>40 cm</td>
</tr>
<tr>
<td>(T_{\text{pcc}, \text{60cm}})</td>
<td>Bottom of aggregate base</td>
<td>60 cm</td>
</tr>
<tr>
<td>(T_{\text{pcc}, \text{8cm}})</td>
<td>Mid-level in PCC</td>
<td>8 cm</td>
</tr>
<tr>
<td>(T_{\text{pcc}, \text{15cm}})</td>
<td>PCC/Soil interface</td>
<td>15 cm</td>
</tr>
<tr>
<td>(T_{\text{pcc}, \text{30cm}})</td>
<td>15 cm in soil</td>
<td>30 cm</td>
</tr>
<tr>
<td>(T_{\text{pcc}, \text{60cm}})</td>
<td>45 cm in soil</td>
<td>60 cm</td>
</tr>
</tbody>
</table>

Equation 1 is used to calculate the amount of energy stored during the heating cycle of the PCC system. The specific equations include the amount of heat stored in the pavement and segregated soil layers corresponding to the temperature sensors. The first term represents the energy stored in the traditional concrete. The average temperature of the PCC was taken as the temperature recorded at mid-height in the pavement. The second term represents the energy stored in the first 15 cm of soil beneath the PCC pavement. The third term represents the energy stored in the soil between 15 cm and 45 cm beneath the PCC pavement. The temperature in this deeper layer was taken as the average between the temperature recorded at 15 cm beneath the pavement and the sensor located at 45 cm beneath the pavement.

\[
\Delta E_{\text{pcc}} = (C_{\text{pcc}})(\Delta T_{\text{pcc}, \text{8cm}})(h_{\text{pcc}}) + (C_{\text{pcc}})\frac{\Delta T_{\text{pcc,15cm}} + \Delta T_{\text{pcc,30cm}}}{2}(h_{\text{15cm}} + h_{\text{30cm}}) + (C_{\text{pcc}})\frac{\Delta T_{\text{pcc,30cm}} + \Delta T_{\text{pcc,60cm}}}{2}(h_{\text{30cm}} + h_{\text{45cm}})
\]

(1)

Equation 2 is used to calculate the amount of energy stored during the heating cycle of the PCPC system. The specific equations include the amount of heat stored in the paved and segregated aggregate base layers corresponding to the temperature sensors. The first term represents the energy stored in the pervious concrete. The average temperature of the PCPC layer was taken as the temperature recorded at mid-height in the pavement. The second term represents the energy stored in the aggregate base beneath the PCC pavement. The temperature in the aggregate base was taken as the value recorded at mid-level in the aggregate base.

\[
\Delta E_{\text{pcpc}} = (C_{\text{pcpc}})(\Delta T_{\text{pcpc, \text{8cm}}})(h_{\text{pcc}}) + (C_{\text{agg base}})(\Delta T_{\text{agg base,40cm}})(h_{\text{agg base}})
\]

Where:

\(\Delta E_{\text{pcc}} \) is the amount of energy stored during the daily heating cycle per unit area from the PCC pavement surface to 60 cm below the surface, J/(cm^2°C)

\(\Delta E_{\text{pcpc}} \) is the amount of energy stored during the daily heating cycle per unit area from the PCPC pavement surface to 60 cm below the surface, J/(cm^2°C)

\(C_{vi} \) is the volumetric heat capacity of layer ‘i’ such as the PCC or soil layer

\(\Delta T_{ij} \) is the change in temperature during heating reported by the sensor at location ‘j’

\(h_{ij} \) is the height of the particular layer ‘i’
Traditional Concrete System

The PCC system contained 15 cm of concrete pavement over a compacted soil subgrade. The volumetric heat capacity (CvPCC) of the concrete was taken as 2.1 J/cm³°C (Asaeda et al. 1996) and a standard density (ρ) was assumed (Mehta and Monterio 1993). Soil density was tested at 12 locations under the PCC, with an average value of 1.9 g/cm³. The heat capacity of the soil was determined from the relationship between concrete heat capacity and density, along with the soil actual density. A summary of values is shown in Table 2. The effects of moisture were not considered for this portion of the study. As previously noted, the data evaluated were all from time periods with negligible antecedent precipitation.

Table 2. Material properties

<table>
<thead>
<tr>
<th>Material</th>
<th>Cv (J/cm³°C)</th>
<th>ρ (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCC</td>
<td>2.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Soil</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>PCPC</td>
<td>1.55</td>
<td>1.8</td>
</tr>
<tr>
<td>Agg. Base</td>
<td>1.2</td>
<td>1.44</td>
</tr>
</tbody>
</table>

Pervious Concrete System

The pervious concrete system consisted of 15 cm of pervious concrete over a 45 cm compacted limestone-aggregate base storage layer. The porosity of the pervious concrete was measured as 31% (Kevern et al. 2009b). The traditional concrete was air entrained, and porosity was assumed at 5%. Therefore, the volumetric heat capacity of the pervious concrete was taken as a proportion of solids versus the traditional concrete, as in Equation 3.

\[
CvPCPC = CvPCC \cdot \frac{100 - n}{100} \tag{3}
\]

Where:

- \(CvPCPC \) is the adjusted volumetric heat capacity of the pervious concrete
- \(CvPCC \) is the selected volumetric heat capacity of the concrete (2.1 J/cm³°C)
- \(n \) is the difference in porosity between the PCC and PCPC (31%–5% = 26%)

The dry density of the limestone base was measured as 1.44 g/cm³. The specific heat storage capacity of limestone was taken as 0.84 J/g°C, yielding a volumetric heat capacity of 1.2 J/cm³°C (engineeringtoolbox 2009). A summary of the material property values used is shown in Table 2.

Results

The typical daily temperatures at the mid-heights of both pavements and the air are shown in Figure 2. During the day, the temperature at mid-level in both pavements was always warmer than the air temperature, with the PCPC approximately 5° C (9° F) warmer than the PCC pavement right after the hottest period of the day. Although the PCPC was warmer during the day, both pavements cooled to similar temperatures during the night.

![Figure 2. Typical pavement hot weather temperature behavior (07/07/07)](image-url)
The temperature behavior of the PCPC system with depth is shown in Figure 3 for the same time period shown in Figure 2. The changes in the PCPC temperature followed closely behind the air temperature variations, and temperatures fluctuated less with depth. The 60 cm depth fluctuated less than 1°C over the analyzed time period.

The temperature behavior of the impervious PCC system with depth is shown in Figure 4 for the same time period as Figure 2 and Figure 3. The changes in PCC temperature in the upper layer of soil (15 cm below grade) were warmer than the changes in air temperature, but followed a similar heating trend. At 30 cm below grade, the temperature response was buffered, with only a slight daily variation and a significant phase lag, as compared with the air temperature heating cycle. Temperature at 60 cm below grade for both pavement types remained similar and constant.

Figure 3. Typical temperature behavior of the pervious concrete system (07/07/07)

Figure 4. Typical temperature behavior of the impervious concrete system (07/07/07)
The energy storage results for the selected days are shown in Table 3. Four of the days had a heating cycle of 9 hours, while one had a heating cycle of 10 hours. For the five days analyzed, the energy stored in the PCC system was greater than the energy stored in the PCPC system, even though the PCPC pavement was warmer than the PCC pavement. This difference in heat stored is a function of the higher porosity in both the PCPC and the aggregate base, as compared with the PCC and underlying soil, respectively, which lowered the PCPC system heat capacity for similar volumes. On average, the pervious concrete system stored 12% less energy than did the traditional concrete from the surface to a background temperature.

<table>
<thead>
<tr>
<th>Date</th>
<th>Maximum Temp, °C (°F)</th>
<th>Heating Duration</th>
<th>Energy Stored PCC (J/cm²)</th>
<th>Energy Stored PCPC (J/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/7/2007</td>
<td>33.7 (92.6)</td>
<td>9 hrs</td>
<td>560.2</td>
<td>492.3</td>
</tr>
<tr>
<td>7/8/2007</td>
<td>34.2 (93.5)</td>
<td>9 hrs</td>
<td>576.7</td>
<td>516.8</td>
</tr>
<tr>
<td>7/17/2007</td>
<td>33.9 (93.1)</td>
<td>9 hrs</td>
<td>501.6</td>
<td>449.5</td>
</tr>
<tr>
<td>7/18/2007</td>
<td>32.3 (90.1)</td>
<td>9 hrs</td>
<td>398.4</td>
<td>352.4</td>
</tr>
<tr>
<td>8/11/2009</td>
<td>32.8 (91.1)</td>
<td>10 hrs</td>
<td>486.6</td>
<td>449.3</td>
</tr>
</tbody>
</table>

Conclusions
Temperature sensors were installed at various depths in adjacent pervious concrete and traditional concrete systems. Temperature data for both systems were analyzed for five days when the maximum temperature was greater than 32°C (90°F). All the analyses were conducted for days with negligible antecedent precipitation. Bulk heat storage was calculated for the daily heating phase, using known values and values common in the literature, for dry conditions of the various layers in the pavement systems, to a depth of a nearly constant background soil temperature. Results show that less energy was stored during heating in the pervious concrete system than in the traditional concrete system. This was observed using similar cementitious mixtures for both pavements (similar cement colors) and under solar radiation conditions whereby, based on previous research, the pervious concrete surface could be expected to have a lower solar reflectance and hence a higher surface temperature than that of the traditional concrete surface.

A strategy for mitigating the UHI effect may be to employ lower energy-storage pavement systems. Using pervious concrete systems, whose layers of materials have higher porosity than do traditional pavement systems, may be an effective tool in reducing the UHI effect. Considerations of material characteristics below grade (e.g., porosity) are important in determining a permeable pavement’s capacity for UHI mitigation. Solar reflectance should not be used independent of these other variables.

Acknowledgments
Portions of this material are based upon work supported by the Iowa Department of Natural Resources, the Iowa Ready Mixed and Concrete Paving Associations, and the National Concrete Pavement Technology Center at Iowa State University. The opinions, findings, and conclusions presented here are those of the authors and do not necessarily reflect those of the research sponsors.

References

(Received Feb 9, 2012, Accepted Oct 10, 2012)