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ABSTRACT 

This study presents a new urban environment assessment system that allows for a dynamic special appraisal 

by integrating Weather Research and Forecasting (WRF), a numerical simulation model for mesoscale climate and 

Cellular Automata (CA) Model, the urban growing prediction model as a whole. Changes in land-use information 

in WRF can strongly influence simulation results, this system first predicts the growth of urban areas over several 

years by using remote sensing (RS) images, and a modified CA model. This modified CA model is an evolution of 

the CA-Markov model with improved flexibility and variability, and with control conditions designed to dominate 

urban expansion patterns. The predicted urban land-use results are then imported into the WRF simulation for an 

environment assessment, to evaluate the impact on the urban environment by a given pattern of expansion, as well 

as control conditions. A study based in the Guangzhou area, in China, is cited as an example to clarify the workings 

of this system. 
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1. Introduction 

 

China has been undergoing a period of economic reform and 

expansion since the 1970s, accompanied by rapid and 

widespread urbanization, and a deterioration of urban 

environments caused by urban heat islands(1).  

In this study, a new urban environment assessment system 

was developed by combining prediction models for urban 

expansion and mesoscale climates. The developed system 

contains two components: a land-use prediction model and a 

mesoscale meteorological model used for regional environment 

simulations. In this study, urban expansion was simulated by a 

modified Cellular Automata (CA) model, based on land-use data 

extracted from remote sensing data, while Weather Research and 

Forecasting (WRF) was used to simulate the regional 

environment. For simulations using WRF, we rewrote the default 

land-use data in WRF with land-use information as predicted by 

the CA model. 

This assessment system was used to investigate the impacts 

of urbanization in Guangzhou city, the capital of Guangdong 

Province, located in southern China. The land-use changes from 

the year 2000 to 2012, under various scenarios of differing urban 

planning and environment protection strategies, were predicted 

by the modified CA model developed in this study, and their 

impacts on the regional environment in Guangzhou were then 

analyzed using the WRF results. 

 

2. Extraction of land-use maps from remote sensing data and 

prediction of land-use maps with a standard CA-Markov 

model 

 

By default, the geogrid program in WRF interpolates land-use 

categories from USGS data derived from the early 1990s, and is 

hardly appropriate for the situation of Guangzhou in the year 

2000 when compared to RS data from the same year, as the 

urban area is too small (Fig.1(1)). As well, the urban area in the 

alternative MODIS geo model(2) provided in WRF after version 

3.1 is too large(Fig1.(2)).  

So, the land-use map for this region in 2000 was extracted by 

the present authors using a combination of nine Landsat-7 RS 

data bands in IDRISI(3), and was classified into MODIS 

24-categories. This map was re-sampled in GIS into a resolution  
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of 1 km to match that of the calculation mesh in WRF, and 

renamed as RS2000 (Fig.1 (3)). The extracted RS2000 dataset 

provided by the present authors was an improved fit for the city, 

especially for the urban area. Similarly, the land-use maps in 

2005 and 2012 were also extracted from RS datasets from 

separate years, and were renamed as RS2005(Fig.1(4)) and 

RS2012(Fig.1(6)), respectively.  

In order to predict urban expansion, the CA model was taken 

into consideration(4). Based on the land-use maps of RS2000 and 

RS2005, a standard Cellular Automata Markov (CA-Markov) 

model that reflects actual urban growth was established for the 

land-use simulations. In a CA-Markov model, the Markov chain 

process controls temporal change among land-use classes, based 

on the transition matrix, Pij, that describes the probabilities of 

each land-use category changing from a certain class i to another 

class j. In this study, this matrix Pij was at first calculated from 

the initial state in the starting year of RS2000 to mid-year of 

RS2005 by the Markov chain. 

Simultaneously, the CA model in a CA-Markov model 

controls spatial pattern changes through local rules considering 

neighborhood configuration and transition to potential maps. As 

shown in Fig.2, the changing rule of land-use was defined as: if 

the target point (x,y) is not water and there is developed lands in 

the vicinity of the target point , the probability of this point 

changing into urban land in this step will be the mean of the 

probability of its neighborhood changing into urban land, and if 

this mean is larger than a certain number , the point (x,y) 

changes into an urban classification. The change in land-use in 

each year was considered as a single step. 

By using the standard CA-Markov model, land-use maps in 

2005 (CA2005) and 2012 (CA2012) were predicted (Fig.1 (5) 

and (7)) as based on RS2000, with the  value set to 0.5. This 

value was determined so that the percentage of urban areas in 

the entire region in CA2005 and CA2012 were almost identical 

to those in RS2005 and RS2012, respectively. 

 Evergreen Needleleaf Forest  Evergreen Broadleaf Forest  Mixed Forests 
 Shrubland  Permanent wetlands  Croplands 

 Urban and Built-Up  Barren/Sparsely Vegetated  Water 

   

(1) USGS (2) MODIS (3) RS2000  
Defaulted WRF land-use data 
from early 1990s 

One of the WRF land-use after 
version 3.1 

Extracted land-use data  
in 2000 from RS datasets 

 

    

(4) RS2005 (5) CA2005 (6) RS2012 (7) CA2012 

Extracted land-use data  
in 2005 from RS datasets 

Predicted map by standard 
CA-Markov model 

Extracted land-use data  
in 2012 from RS datasets 

Predicted map by standard 
CA-Markov model 

Figure 1: Default geographic models in WRF and land-use maps derived from the standard CA-Markov model 

 

St+1(x,y)	=	fሺSt(x,y),	Nሻ 

 

St(x,y): State of point (x,y) at time t 

N: Vicinity of target point 

Figure 2: The changing rule at the target point 

Target point (x,y) 

Neighborhood 
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3. WRF simulations using predicted and extracted land-use 

data 

 

In order to validate the prediction results of land-use data with 

the CA model in 2005 and 2012, as well as to clarify the effect 

of urban expansion on the thermal environment, numerical 

experiments with WRF were performed via the three steps 

shown in Table 1. The nesting of the three calculation domains 

are shown in Fig.3. The grid size in the horizontal direction in 

domain 3 was 1 km × 1 km, and the side length was 120 km. For 

comparison purposes, an assessment area that covers seven main 

districts in Guangzhou and two comparison points were 

separately selected in suburban and urban areas, as marked in 

Fig.3. In this figure, comparison point 1 is a weather station of 

the global observation dataset established by NOAA. 

WRF simulations were performed for a 1-month period, and 

results for August 1 to August 5, which were rainless days, 

were obtained through validation with weather records in this 

study. WRF simulations in step A, using the default 

geographic models and the extracted RS2000 land-use data, 

separately proved that simulation results can differ 

significantly with different land-use models, and that the 

result obtained from the extracted RS2000 model is much 

closer to observations as compared with the default models at 

comparison point 1. 

Simulation results from the extracted and predicted maps 

in 2005 and 2012 were clearly consistent with each other at 

both comparison points in steps B and C, and all simulation 

results agreed well with observations at comparison point 1 

(see Fig. 4). The spatial distribution results of T2 (temperature 

at 2 m height) and SET* (the standard effective temperature) 

in step C are shown in Figures 5 (1) to (4) for 15:00 on August 

2, when northerly wind was observed at the observation site. 

Here, SET* index is defined as the equivalent temperature of an 

isothermal environment at 50% RH in which a subject, while 

wearing clothing standardized for the activity concerned, would 

have the same heat stress (skin temperature) and 

thermo-regulatory strain (skin wettedness) as in the actual test 

environment(5). The results show that the standard CA-Markov 

model provides a satisfactory urban sprawl prediction that 

accurately reflects the actual urban expansion. It is also clear that 

the spatial SET* distribution is quite different from that of T2 in 

the southern area. For the suburban region in the southern area, 

even though the air temperature in this region is higher than the 

urban area in the middle from west to east, SET* is lower. This 

result was caused by the different surface temperature, 

reflectance, and humidity in between the urban and suburban 

areas. 

Table 1: Analytical conditions 
Step A Case No. A1 A2 A3 

Simulation 
Period 

2000.07.20, 8:00~2000.08.20,8:00  
(GMT) 

Geo model USGS MODIS RS2000 
Step B Case No. B1 B2 B3 

Simulation 
Period 

2005.07.20, 8:00~2005.08.20,8:00  
(GMT) 

Geo model RS2000 RS2005 CA2005 
Step C Case No. C1 C2 

Simulation 
Period 

2012.07.20, 8:00~2012.08.20,8:00  
(GMT) 

Geo model RS2012 CA2012 
 

Microphysics Option WDM 6-class scheme 
Shortwave Radiation 

Option 
Dudhia scheme 

Longwave Radiation 
Option 

rrtm scheme 

Land-surface Option Unified Noah land-surface model 
Boundary Layer YSU scheme 
Cumulus Option Kain-Fritsch (new Eta) scheme 

 

Figure 3: Configuration of the calculation domains  

and assessment area 
 

 

(1) Point 1(Suburban area) 

 
(2) Point 2(Urban area) 

Figure 4: Average T2 on sunny days (August 1 -5, 2012) 

The error bars show the standard deviations of 

observation at point 1 with dot line and CA2012 with 

solid line. 
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4. Modified CA model and protection proposal for urban 

expansion 

 

Based on the Standard CA model, a new coefficient D was 

added to control the expansion method of the original city, in 

order to create different urban development modes for the 

assessment of future years. According to existing research (e.g., 

Li and Yeh(6)), this controlled CA model was modified into the 

following formula: 

St+1(x,y)=f൫St(x,y),	Dሺx,yሻ,	N൯ (1) 

Here, the new parameter, D(x,y), is the extension coefficient 

of point (ݔ,y). By using this new coefficient, a controlled 

expansion of the urban areas can be used by the CA model to 

regulate urban development in various ways. The coefficient D 

can also be modified to obtain a feedback of the environmental 

assessment results. In this case, the formula can be rewritten as: 

St+1(x,y)=fሺPs
t (x,y)ሻ (2) 

Ps
t (x,y)=f൫Dሺx,yሻ×Pሺx,yሻ൯ (3) 

This modified CA model has been used in previous studies to 

create urban expansion modes under differing control conditions 

(e.g., White and Engelen(7)). In the present study, this model was 

used to introduce environmental effects into considerations of 

urban expansion.  

 

5. Investigation of the effect of urban expansion patterns on 

the thermal environment 

 

In order to evaluate the influence of various urban expansion 

patterns, three different urban sprawl typologies were defined in 

this study: (1) A South-North expanded city mode (SN_12), 

which is most similar to the existing urban planning of 

Guangzhou city (Fig.6 (1)); (2) An East-West expansion pattern 

(EW_12) to create a linearly extended urban pattern (Fig. 6 (2)); 

and (3) A Centered mode (Center_12), which is a common 

sprawl mode in Chinese cities such as Beijing (Fig.6 (3)). The 

 

 
(1) T2 (RS2012) 

 
(2) T2 (CA2012) 

 
(3) SET* (RS2012) 

 
(4) SET* (CA2012) 

Figure 5: Spatial distribution of T2 and SET* in step C (15:00 on August 2) 
   

 

 

(1) South-North 
expanded city 
mode (SN_12) 

(2) East-West 
expanded city 
mode (EW_12) 

(3) Centered mode 
(Center_12) 

Figure 6: Three different urban sprawl typologies 

 

 
(1) SN_12 (2) EW_12 (3) Center_12 

Figure 7: Spatial distributions of SET* on periods of  

northerly wind 

 

 
(1) SN_12 
    CA2012 

(2) EW_12 
    CA2012 

(3) Center_12 
    CA2012 

Figure 8: Spatial distributions of SET* difference between  

each urban expansion case (SN_12, EW_12 and 

Center_12) and actual situation predicted by CA 

model (CA2012)
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regional environments in these three land-use conditions were 

simulated in WRF. 

Spatial distributions of averaged SET* during periods of 

northerly wind (Fig.7) suggest that urban forms can exert 

various influences on air temperature distributions. Fig.8 

illustrates the spatial distributions of SET* difference between 

each urban expansion case (SN_12, EW_12, and Center_12) and 

the actual situation case predicted by the standard CA-Markov 

model (CA2012). In case SN_12 (Fig.8(1)), SET* in the 

southern part of the expanded city area clearly increased 

compared to that in case CA2012. However, SET* in this area is 

still not as high as the other city areas because this area is 

surrounded by cropland and located near the sea. In case EW_12 

(Fig.8(2)), SET* decreased from the north west region to the 

south west region. In case Center_12 (Fig.8(3)), SET* in some 

areas in the middle of the western part increased even though 

SET* in this region was already high. Fig.9 shows the 

probability densities of T2 only in the urban area for the three 

different cases of sprawl patterns during the northerly wind 

period. The figure indicates that centralized sprawl patterns 

(Center_12) will cause a clear increase in the size of the 

high-temperature area. For the linearly developed modes of 

SN_12 and EW_12, the proportions of high-T2 areas do not 

differ, while the cooler area in SN_12 is larger than that in 

EW_12, as the southern urban area in this case is near the sea 

(Fig.8). 

 

6. Conclusions 

 

As the modification of land-use data can have a significant 

impact on WRF simulation results, this study has provided a 

new consideration of urban land-use and environment analysis 

by combining remote sensing data, urban sprawl models, and 

numerical simulations. Numerical predictions of urbanization 

impacts in Guangzhou, China, using the developed system were 

performed to provide an example. Linear expansion modes can 

release heat to open spaces and avoid increases in the size of 

high temperature areas that are prevalent in over-sized cities. 
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Figure 9: Probability densities of T2 during the period of 

northerly wind 


